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Abstract Continuum solvent models such as General-
ized-Born and Poisson–Boltzmann methods hold the
promise to treat solvation effect efficiently and to enable
rapid scoring of protein structures when they are com-
bined with physics-based energy functions. Yet, direct
comparison of these two approaches on large protein
data set is lacking. Building on our previous work with a
scoring function based on a Generalized-Born (GB)
solvation model, and short molecular-dynamics simula-
tions, we further extended the scoring function to com-
pare with the MM-PBSA method to treat the solvent
effect. We benchmarked this scoring function against
seven publicly available decoy sets. We found that,
somewhat surprisingly, the results of MM-PBSA ap-
proach are comparable to the previous GB-based scor-
ing function We also discussed the effect to the scoring
function accuracy due to presence of large ligands and
ions in some native structures of the decoy sets.

Keywords Poisson–Boltzmann continuum solvent
model Æ Protein structure prediction Æ AMBER force
field Æ Molecular mechanics

Background

In the physics-based approaches, the free energy of a
given conformational state, i, relative to a chosen ref-
erence state in solution can be approximated by two
components:

DGi ¼ DGinternal þ DGsolvation ð1Þ

where DGinternal is the intramolecular free-energy
component consisting of internal entropy and internal
energies, including bond, angle, torsional, van der Waals
and electrostatics energy terms. DGsolvation accounts for
the solvation free energy. The term DGinternal is often
modeled by molecular mechanics with force fields such
as AMBER, [1] OPLS [2] and others. Therefore, the free-
energy component DGinternal is often referred to as
DGMM: The DGsolvation term describes the free energy due
to solvation, which includes hydrophobic packing and
solvent-solute polarization.

Recent development in physics-based scoring func-
tions has focused on continuum-solvent models that
implicitly account for the solvation effect in a mean-field
manner. Lazaridis et al. [3, 4] have developed an effective
energy function which combines the CHARMM po-
tential energy with a Gaussian model for the solvation
free energy to discriminate between correctly folded and
misfolded conformations of six proteins. They found
that this approach was successful in most cases when
combined with energy minimization, but was not suc-
cessful with molecular-dynamics simulations. Several
other authors also developed physics-based scoring
functions that incorporated different theoretical treat-
ments of the solvation effect, including a noniterative
Langevin dipole solvent, [5] explicit solvent combined
with short molecular-dynamics, [6] and implicit solvent
based on different implementations of Generalized Born
(GB) solvent models. [7–9] Most recently, Hsieh and
Luo [10] have also developed a scoring function based
on a revised parm99 parameter set of the AMBER force
field and a Poisson–Boltzmann implicit solvent treat-
ment of the solvation effect with excellent results, albeit
at a higher computational cost. These studies have laid
the foundation for physics-based scoring function for
protein structure prediction and encouraging results
have been obtained.

Generalized-Born and Poisson–Boltzmann (and
MM-PBSA) are two of the most important continuum-
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solvent methods to treat the solvation effects. Techni-
cally, the GB method is considered computationally less
intensive. However, solution of the Poisson–Boltzmann
equation has been treated as the gold standard and has
been the basis for the development of GB parameters.
Thus, MM-PBSA method is considered somewhat
superior in terms of accuracy although it is expected that
these two methods may yield comparable results when
GB is parameterized properly. Nevertheless, there are no
direct comparisons between these two important meth-
ods on large data sets.

Previously, we reported a scoring function based on
the Duan et al. [11] AMBER parameter set ff03 with a
GB implicit solvent model and short molecular-dynam-
ics simulation. We applied this scoring function to an
extensive set of decoys and found that this approach
yielded excellent performance with a computationed cost
comparable to minimization-based scoring schemes [12].
In this paper, we examine the MM-PBSA [13] method to
estimate the solvation free energy and explore the per-
formance of this incremental increase in scoring-func-
tion complexity.

The general idea of MM-PBSA is to use molecular
dynamics to generate a series of snapshots and then to
calculate the average free energy D�G:

D�G ¼ DEMM þ D�GPBSA � TDSMM; ð2Þ

where D�G is the calculated average free energy, DEMM is
the average molecular mechanics energy, D�GPBSA is the
solvation free energy. The �TDSMM term represents the
solute configuration entropy and can be estimated by
quasi-harmonic analysis of the trajectory or by normal-
mode analysis [13]. D�GPBSA is calculated with a numer-
ical solution of the Poisson–Boltzmann equation where
the surface-area term is included to estimate the non-
polar free-energy component [14].

Typically, the molecular-dynamics trajectories used
for MM-PBSA calculations are generated from explicit
solvent simulations [15]. The accuracy of this approach
has been demonstrated in several applications such as
estimation of the relative free energies of duplex RNA
and DNA, [16, 17] and binding free-energy calculations
[18, 19]. However, the requirement of full atomic rep-
resentation of both solute and solvent, even for short
molecular dynamics, still presents a substantial compu-
tational burden, considering the large number of decoys
to be evaluated in any particular prediction application.
To reduce the computational requirement further, we
elected to substitute the GB model for explicit solvent in
generating the molecular-dynamics trajectories. Because
the new results are based on the identical set of snap-
shots generated from earlier GB simulations, we can
faithfully compare the two methods.

In addition to this simplification, we also elected to
exclude the �TDSMM term in our scoring function. This
choice can be rationalized by noting that the solute en-
tropy comprises two components, including entropy due
to a number of conformations and configurational

entropy due to the shape of individual conformation.
Where the number of conformations is implicitly taken
into consideration by the number of decoys, the
configurational entropy, which can be calculated by
normal-mode analysis, is generally similar from one
conformation to another as long as the conformations
are relatively compact. Therefore, it is acceptable to ig-
nore the explicit solute entropic terms in the scoring
function.

In the remainder of this paper, we present the scoring
results of this AMBER/MM-PBSA scoring function as
applied to the same set of decoys used in the earlier
AMBER/GB-MD scoring-function evaluation.

Methods

Protein decoys were the same as in the previous study.
All calculations were performed on our in-house 40 PC
dual Pentium IV Beowulf cluster. A set of Perl scripts
was developed to automate the preparation of molecu-
lar-dynamics simulations and MM-PBSA calculations.
The molecular-dynamics simulations were performed by
using AMBER7 suite, while the MM-PBSA calculation
was calculated by using MM-PBSA scripts in AMBER7
and Delphi.

All decoy structures were prepared with the Leap
modules in AMBER and underwent 500 steps of con-
strained minimization using the Sander module. The
minimized structures were then subjected to a 5-ps
equilibration followed by another 5-ps molecular-
dynamics simulation, both using 2-fs time steps. During
the equilibration runs, initial velocities were assigned
from a Maxwellian distribution at a temperature equal
to 100 K. Both the equilibration and production were
kept at a constant temperature of 300 K using Berend-
sen’s weak coupling scheme. Solvent effects were treated
with the GB implicit solvent model implemented in the
AMBER package using a cutoff value of 200 Å for the
nonbonded interaction. The coordinates were saved ev-
ery 1 ps for MM-PBSA calculation.

The MM-PBSA energy scoring function contains the
following terms:

EPBTOT¼EbondþEangleþEdihedralþE1�4NB

þE1�4EELþEvdwþEelecþEPBSURþEPBCAL; ð3Þ

where Ebond; Eangle; and Edihedral are the bond terms,
E1�4NB; E1�4EEL; Evdw and Eelec are the nonbonded
terms, EPBSUR is the hydrophobic contribution to sal-
vation-free energy for PB calculations and EPBCAL is the
reaction-free energy calculated by PB. In our analysis,
the PB total energy was calculated for the five snapshots
from the short MD production run and the average
value EPBTOT was taken as the score. The atomic charges
were obtained from Amber ff03 force field. The dielectric
constant of the protein was set to 2.0 and that for the
surrounding solvent was set to 80.0. The linear PB was
calculated iteratively twice. The surface tension was set
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to 0.00542 kcal mol�1 Å2. The radius of the probe
sphere used to calculate the solvent accessible surface is
set as 1.4 Å.

Results and discussion

To facilitate comparison, we carried out the entire two-
stage scoring starting from the MD-GB calculation as
we had done in our previous study and using the same
trajectory generated to perform the MM-PBSA calcu-
lations in the second stage. In this study, other than the
length of simulations and number of snapshots used in
MM-PBSA calculation, we left all other parameters as
their default values in the AMBER package. Here we are
primarily interested in a straightforward estimation of
how well current standard protocols can be applied

towards the hierarchical scheme of structure prediction.
The results of our scoring are presented in Tables 1, 2, 3,
4, 5, 6, and 7. In the following sections, we examine four
types of benchmarking measurements to assess the per-
formance of this scoring function. In the first bench-
marking test, we ask the question ‘‘How accurately can
this new scoring function identify the experimentally
determined native structure from the ensemble of de-
coys?’’ In the second benchmark, we examine the sta-
bility gap-energy fluctuation ratio of the resulting scores.
This measure is assessed by the z-scores of the native
structures and tells us how much the scoring function
separates out the native structure from the rest of the
decoys. In the third benchmark, we ask the question of
how well the energy scores correlate to similarity dis-
tances between decoys and the native structure. And
finally, in the fourth benchmark, we look at the per-

Table 2 Ranking statistics of fisa decoy set

PDB Nres RMSD Ndecoy PBSA GB

Rank z z¢ R Rs Rank z z¢ R Rs

1ctf 68 2.2–10.2 631 226 �0.09 0.64 0.02 0.07 471 0.08 0.37 0.04 0.25
1hdd-C 63 2.3–9.5 676 229 �0.14 0.78 0.06 0.08 415 0.00 0.35 0.05 0.23
2cro 65 2.5–10.5 661 1 �1.06 �0.06 0.03 0.18 1 �0.65 �0.26 �0.02 0.07
4icb 65 2.1–9.7 675 22 �0.81 0.33 0.04 0.07 1 �0.58 �0.10 0.03 0.09
Average 65.3 2.3–10.1 661 �0.53 0.42 0.04 0.10 �0.29 0.09 0.02 0.16

Incorrectly identified entries are marked in italics

Table 3 Ranking statistics of Baker CASP3 decoy set

PDB Nres RMSD Ndecoy PBSA GB

Rank z z¢ R Rs Rank z z¢ R Rs

1bg8-A 76 6.0–15.8 1201 2 �0.87 0.12 0.02 0.11 1 �0.45 �0.03 0.01 0.07
1bl0 99 3.6–18.2 972 2 �0.77 0.00 0.00 �0.02 1 �0.53 �0.02 �0.01 �0.07
1eh2 79 4.0–15.3 2414 1858 �0.14 0.51 0.03 �0.04 879 �0.27 0.18 0.04 �0.01
1jwe 114 7.8–20.9 1408 1 �1.58 �0.71 0.03 0.09 1 �1.02 �0.48 0.03 0.15
Smd3 71 8.5–17.0 1201 1 �1.65 �0.79 0.05 0.06 1 �0.97 �0.41 0.05 0.10
Average 87.8 6.1–18.6 1439 �1.01 �0.18 0.03 0.04 �0.65 �0.15 0.02 0.05

Incorrectly identified entries are marked in italics

Table 1 Ranking statistics of 4-state reduced decoy set

PDB Nres RMSD Ndecoy PBSA GB

Rank z z¢ R Rs Rank z z¢ R Rs

1ctf 68 2.2–10.2 631 1 �3.00 �1.29 0.27 0.48 1 �1.70 �0.73 0.12 0.51
1r69 63 2.3–9.5 676 1 �2.89 �0.90 0.40 0.56 1 �1.89 �0.73 0.23 0.60
1sn3 65 2.5–10.5 661 1 �1.84 �0.70 0.18 0.33 1 �1.14 �0.64 0.09 0.35
2cro 65 2.1–9.7 675 1 �1.99 �0.26 0.43 0.64 1 �1.54 �0.49 0.20 0.58
3icb 75 1.8–10.7 654 7 �1.34 0.31 0.30 0.53 2 �0.80 0.01 0.16 0.62
4pti 58 2.8–10.8 688 1 �3.63 �1.13 0.27 0.30 1 �3.46 �1.70 0.28 0.51
4rxn 54 2.6–9.3 678 6 �2.20 0.14 0.28 0.26 1 �5.00 �1.86 0.49 0.42
Average 64 2.3–10.1 666 �2.41 �0.55 0.30 0.44 �2.22 �0.88 0.22 0.51

Incorrectly identified entries are marked in italics
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formance in comparison to the scoring function of Hiseh
and Luo, in which the PBSA treatment was directly
incorporated into the molecular-dynamics simulation as
opposed to our post-processing approach.

Native structure identification

The ultimate goal of developing scoring functions is to
identify the most native-like structure from an ensemble
of decoys. The accuracy of the PBSA scoring function

(percentage of correctly identified structures in a set)
ranges from the low of 25% to the high of 100%. Out of
a total of 115 decoy ensembles scored, the PBSA scoring
function incorrectly identified the native structure in 20
(17%) instances, whereas the GB scoring function per-
formed slightly better with 17 (15%) instances of
incorrect identification. However, the failures in each
case do not overlap completely. In Table 8, we sum-
marize the structures incorrectly identified by each
scoring function in a side-by-side comparison. Because
the performance of energy-scoring functions is typically

Table 4 Ranking statistics of the Globin Homology (hg_structal) decoy set

PDB Nres RMSD Ndecoy PBSA GB

Rank z z¢ R Rs Rank z z¢ R Rs

1ash 147 2.2�7.0 30 1 �2.34 �0.88 0.59 0.63 1 �2.85 �1.16 0.34 0.27
1bab-B 146 0.7�6.9 30 1 �2.76 �1.35 0.70 0.80 1 �2.48 �1.00 0.83 0.89
1col-a 197 12.3�30.2 30 1 �3.20 �2.27 0.53 0.24 1 �1.53 �1.08 0.27 0.22
1cpc-A 162 6.8�14.0 30 1 �4.41 �3.71 0.67 0.24 1 �4.42 �3.54 0.60 0.07
1ecd 136 2.5�6.2 30 1 �0.97 �0.40 0.58 0.56 1 �0.71 �0.34 0.52 0.63
1emy 153 0.7�9.3 30 1 �1.29 �0.11 0.64 0.91 1 �0.89 �0.14 0.45 0.81
1flp 142 1.7�7.2 30 1 �2.88 �1.56 0.72 0.50 1 �3.29 �2.50 0.82 0.54
1gdm 153 2.6�8.4 30 1 �1.17 �0.67 0.59 0.67 1 �0.81 �0.42 0.54 0.66
1hbg 147 2.1�6.9 30 1 �2.76 �1.65 0.69 0.61 1 �3.23 �1.92 0.75 0.76
1hbh-A 142 1.0�6.3 30 1 �1.93 �0.71 0.89 0.89 1 �3.23 �1.92 0.74 0.66
1hbh-B 146 1.0�7.3 30 1 �1.90 �0.44 0.86 0.81 1 �2.01 �0.65 �0.12 �0.08
1hda-A 141 0.5�5.8 30 1 �1.63 �0.12 0.79 0.83 1 �1.85 �0.23 0.91 0.92
1hda-B 145 0.5�5.6 30 1 �2.33 �0.83 0.81 0.83 1 �2.11 �0.79 0.88 0.92
1hlb 157 2.9�7.0 30 6 �0.85 0.35 0.47 0.41 5 �0.79 0.66 0.52 0.52
1hlm 158 3.0�8.7 30 28 0.29 0.85 0.06 0.30 29 0.15 0.64 0.04 0.30
1hsy 153 0.8�9.7 30 5 �0.87 0.18 0.73 0.84 2 �0.60 0.03 0.61 0.85
1ith-A 146 1.6�6.1 30 1 �0.92 �0.09 0.32 0.43 1 �0.55 �0.05 0.18 0.47
1lht 153 0.8�9.7 30 1 �1.03 �0.01 0.39 0.69 1 �0.69 �0.04 0.22 0.70
1mba 13 1.8�7.3 30 1 �2.44 �0.63 0.66 0.53 1 �2.61 �1.32 0.82 0.65
1mbs 153 1.7�9.3 30 29 1.52 2.83 0.27 0.63 29 0.73 1.55 0.14 0.63
1myg-A 153 0.5�9.6 30 4 �0.95 0.40 0.49 0.75 4 �0.68 0.17 0.30 0.76
1myj-A 153 0.6�7.9 30 4 �1.76 0.44 0.86 0.85 5 �1.57 0.42 0.89 0.84
1myt 146 1.0�10.0 30 1 �0.97 �0.01 0.44 0.88 1 �0.72 �0.21 0.30 0.85
2dhb-A 141 0.6�6.4 30 8 �0.67 0.91 0.83 0.86 13 �0.41 1.37 0.81 0.86
2dhb-B 146 0.9�7.1 30 1 �2.05 �0.09 0.71 0.72 18 0.09 2.15 0.14 0.08
2lhb 149 3.0�8.1 30 1 �2.86 �1.54 0.65 0.17 1 �3.06 �1.81 0.28 �0.06
2pgh-A 141 0.7�6.5 30 16 �0.13 1.39 0.88 0.84 14 �0.40 1.04 0.89 0.87
2pgh-B 146 0.8�7.5 30 8 �0.35 0.36 0.73 0.77 8 �0.34 0.25 0.72 0.88
4sdh-A 145 2.3�6.4 30 1 �2.83 �1.47 0.67 0.46 1 �3.47 �2.23 0.64 0.31
Average 150 2.0�8.6 30 �1.60 �0.37 0.63 0.64 �1.53 �0.45 0.52 0.58

Incorrectly identified entries are marked in italics

Table 5 Ranking statistics of the lattice fit

PDB Nres RMSD Ndecoy PBSA GB

Rank z z¢ R Rs Rank z z¢ R Rs

1beo 98 7.0�15.6 2001 1 �4.57 �2.62 0.00 0.01 1 �2.87 �1.40 �0.03 �0.05
1ctf 68 5.5�12.8 2001 1 �4.91 �2.65 �0.06 �0.11 1 �2.33 �1.21 �0.05 �0.13
1dkt-A 72 6.7�14.1 2001 1 �2.42 �1.27 �0.01 �0.07 1 �1.05 �0.25 �0.02 �0.11
1fca 55 5.1�11.4 2001 1 �1.14 �0.11 0.02 0.01 1 �1.14 �0.62 0.02 �0.03
1nkl 78 5.3�13.6 2001 1 �1.64 �0.12 0.07 0.43 3 �1.05 0.13 0.00 0.33
1pgb 56 5.8�12.9 2001 1 �1.69 �0.89 �0.01 0.04 1 �0.82 �0.42 �0.02 0.04
1trl-A 62 5.4�12.5 2001 1 �1.95 �0.87 0.02 0.16 1 �0.94 �0.24 0.01 0.12
Average 70 5.8�13.3 2001 �2.62 �1.22 0.01 0.07 �1.46 �0.57 �0.01 0.02

Incorrectly identified entries are marked in italics
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coupled to the method of decoy generation, we further
compared the performances of the scoring functions in
each of the seven decoy sets.

In the first set containing ab initio models generated
by the 4-state reduced method of Park and Levitt [20],
both the GB and PBSA scoring functions incorrectly
identified the native structure of 3icb, a calcium-binding
protein from bovine intestine. However, the native
structures were still ranked among the top ten structures
and the top-ranking decoy was only less than 2.8 Å
away from the native structure. PBSA also incorrectly
identified 4rxn, an oxidized rubredoxin. Figure 1 shows
the native structures of 3icb and 4rxn. In both cases,
metal ions played integral roles in the native structures.
Thus, explicit consideration of the ions is necessary.
Unfortunately, neither of our scoring functions consid-
ered the energetic contributions of the bound ions.

In the fisa set, which contains decoys for four small
a-helical proteins, both GB and PBSA failed on 1fc2 and
1hdd-C. PBSA also failed on 4icb. In the case of 1fc2, a
human Fc fragment, the native structure obtained from
PDB is a complex structure with fragment B of protein
A bound to it. The top-ranking decoy is 3.98 Å away by
GB and 8.7 Å away by PBSA. In the case of 1hdd-C, the
experimental structure is in complex with DNA, and
both GB and PBSA identified the same decoy structure
(6.005 Å away from the native) as the top-ranking
structure. In the case of 4icb (Cal-binding D9 K), we
also see that calcium ions are integral to the native
structure, consistent with the pattern of failure observed
in the previous set. In this instance, PBSA identified a
structure 12 Å away from the native structure as the top-
ranking structure.

In the Baker CASP3 set, although PBSA misidenti-
fied 1bg8-A and 1bl0, the native structures were still
ranked as the number 2 candidates. In contrast, both
GB and PBSA failed significantly in the case of 1eh2,
which is another calcium-binding protein. The top-
ranking decoys of 1eh2 in both scoring functions were
�10 Å away from the experimental structure. However,
this is also a case under the influence of metal ion
binding.

In the globin-homology set (hg_structal), the trend of
failure is not so clear-cut, although PBSA and GB failed
on almost identical sets of proteins. Here, the most na-
tive structures contain some ligand groups such as heme,
the acetyl group, cyanide ion, etc. Therefore, binding of
these ligands could have played roles. Nevertheless,
PBSA performed slightly better than GB (69% vs. 65%
accurate) on this set. On average, the native structures
were also ranked slightly higher in PBSA than in GB.
However, in the instance, where PBSA correctly identi-
fied the native structure but GB failed (2dhb-B), the top-
ranking structure in GB was only 2.2 Å away from the
experimental structure.

In the lattice ssfit decoy set containing conformations
of eight small proteins generated by ab initio methods,
PBSA correctly identified all the native structures, while
GB misidentified one protein’s (1nkl) native structure. It
is interesting to note that this misidentified structure
does not contain any bound ions or ligands and the top-
ranking decoy in GB is about 10.4 Å away from the
experimental structure.

In the local-minima decoy set, which contains con-
formations of ten proteins derived from the experimen-
tal secondary structures of a group of diverse structures,
GB and PBSA correctly predicted the same number of
native structures.

Finally, in the Lu and Skolnick set [21, 22] (courtesy of
Lu and Skolnick), both GB and PBSA were able to
identify the native structures correctly in all the decoy
ensembles. Note that in our previous GB scoring using
non-standard values for GB parameters, four native
structures were misidentified. It appears that the default
values for GB as found in the AMBER 7 package are
more suited to scoring decoys generated by the threading-
based tertiary restraints approach of Skolnick et al. [23].

Comparison of ‘‘z-scores’’

The ‘‘z-score’’ is a statistical measure that tells how far
and in what direction a given item deviates from the
average of a distribution. It is defined as:

Table 6 Ranking statistics of local minima decoy set (LMDS)

PDB Nres RMSD Ndecoy PBSA GB

Rank z z¢ R Rs Rank z z¢ R Rs

1bo0n-B 31 2.45–6.03 498 141 �0.55 2.54 0.06 0.08 211 �0.20 2.18 0.10 0.10
1bba 36 2.78–8.91 501 478 0.44 1.15 �0.05 �0.07 501 10.57 13.49 �0.04 0.07
1ctf 68 3.59–12.5 498 1 �3.21 �1.24 0.34 0.37 1 �6.02 �3.07 0.31 0.28
1dtk 57 4.32–12.6 216 104 �0.04 2.68 0.07 0.06 1 �5.20 �2.31 0.11 �0.01
1fc2 43 3.99–8.45 501 1 �3.07 �0.18 0.02 0.01 21 �1.84 1.18 �0.01 �0.02
1igd 61 3.11–12.6 501 1 �2.86 �1.05 0.05 0.04 1 �6.41 �3.91 0.10 0.00
1shf-A 59 4.39–12.3 438 1 �2.86 �1.05 0.03 0.03 1 �6.41 �3.91 0.08 0.07
2cro 65 3.87–13.5 501 1 �2.16 �0.54 0.17 0.17 1 �7.56 �4.66 0.10 0.00
2ovo 56 4.38–13.4 348 1 �2.73 �0.85 0.07 �0.03 1 �5.55 �3.00 �0.03 �0.04
4pti 58 4.94–13.2 344 1 �4.21 �1.89 �0.07 �0.12 1 �7.77 �5.36 0.10 0.00
Average 53 3.48–11.3 435 �2.12 �0.04 0.07 0.05 �3.64 �0.94 0.08 0.05

Incorrectly identified entries are marked in italics
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znative ¼
xnative � �x

r
ð4Þ

where x is the energy score of the native structure, �x is
the average energy score of the decoy ensemble and r is
the standard deviation of the decoy ensemble. Because it
is desirable for a scoring function to be able to separate
the native state as far apart from the non-native states,

the z-scores is often used to assess this aspect of scoring
functions.

In this benchmark, the average z-score ranges from
�0.53 to �6.45 for the PBSA scores, and from �0.29 to
�5.94 for the GB scores. In all but the local minima
decoy set (LMDS), PBSA scores resulted in a better
average value of z-score than GB scores. This result
suggests that the use of PBSA has captured (and perhaps

Table 7 Ranking statistics of Lu and Skolnick decoy set

PDB Nres RMSD Ndecoy PBSA GB

Rank z z¢ R Rs Rank z z¢ R Rs

1a32 85 11.0�16.2 96 1 �2.70 �1.92 0.24 �0.07 1 �2.03 �1.52 0.23 0.08
1ah9 71 5.3�11.2 97 1 �6.95 �5.33 0.43 0.16 1 �6.23 �3.96 0.45 0.20
1aoy 78 3.6�12.2 134 1 �7.35 �5.38 0.39 0.19 1 �6.64 �4.81 0.31 0.11
1bq9A 53 6.1�11.1 115 1 �6.59 �4.63 0.34 0.08 1 �6.62 �4.62 0.33 0.04
1bw6A 56 4.2�12.0 120 1 �4.04 �1.59 0.18 0.07 1 �5.08 �3.24 0.21 0.08
1c5a 66 4.3 �12.2 110 1 �8.09 �6.56 0.31 0.14 1 �6.96 �4.93 0.29 0.17
1cewI 108 4.8�12.3 204 1 �7.49 �5.62 0.30 0.05 1 �3.56 �2.72 0.06 �0.02
1cis 66 3.4�9.2 109 1 �5.60 �3.53 0.33 �0.02 1 �4.71 �2.68 0.22 �0.14
1csp 64 4.0�11.9 145 1 �7.66 �5.41 0.07 �0.14 1 �6.97 �5.52 �0.06 �0.23
1erv 105 2.2�13.3 88 1 �7.84 �6.16 0.70 0.29 1 �6.93 �5.22 0.65 0.29
1fas 61 3.4�8.2 114 1 �7.58 �5.78 0.38 0.29 1 �2.40 �1.73 0.04 0.25
1ftz 70 4.6�11.0 145 1 �6.66 �4.10 0.32 0.45 1 �2.26 �1.41 0.17 0.46
1gpt 47 2.3�9.5 123 1 �4.57 �2.26 0.06 �0.06 1 �5.84 �3.81 0.09 �0.04
1hlb 138 2.4�13.8 92 1 �7.94 �6.34 0.35 0.23 1 �6.80 �5.41 0.33 0.19
1hmdA 113 2.4�12.0 99 1 �7.50 �6.41 0.45 0.15 1 �6.57 �5.18 0.43 0.21
1hp8 68 2.9�13.0 109 1 �6.68 �4.95 0.16 0.01 1 �6.18 �3.98 0.11 �0.02
1ixa 39 3.4�10.5 356 1 �3.57 �1.18 0.11 0.09 1 �4.77 �2.32 0.08
1kjs 74 4.2�13.4 119 1 �4.53 �2.47 0.13 0.11 1 �4.88 �2.55 0.17 0.16
1ksr 100 4.0�8.9 224 1 �3.73 �1.17 0.08 �0.01 1 �5.25 �3.32 0.19 0.06
1lea 72 2.6�6.4 137 1 �8.84 �7.31 0.52 0.14 1 �8.09 �6.44 0.47 0.14
1mba 146 2.2�13.5 93 1 �8.03 �6.64 0.39 0.21 1 �3.94 �3.00 0.23 0.30
1ner 74 7.4�13.6 105 1 �5.85 �3.63 0.35 0.13 1 �5.86 �3.38 0.31 0.09
1ngr 85 2.5�13.6 84 1 �7.35 �6.01 0.25 0.10 1 �6.75 �4.60 0.31 0.18
1nkl 78 2.7�16.5 78 1 �5.82 �3.29 0.35 0.28 1 �6.28 �4.69 0.28 0.17
1pdo 121 6.3�11.1 124 1 �7.40 �5.16 0.56 0.43 1 �8.24 �6.41 0.61 0.42
1pgx 56 2.0�11.4 73 1 �6.95 �5.61 0.17 0.00 1 �6.41 �5.01 0.35 0.17
1poh 85 1.8�12.2 97 1 �7.61 �5.95 0.24 0.16 1 �6.64 �4.73 0.20 0.11
1pou 71 2.9�10.6 88 1 �7.09 �5.28 0.35 0.08 1 �6.44 �4.46 0.35 0.07
1pse 69 7.8�13.4 329 1 �8.33 �5.69 0.18 0.71 1 �6.09 �3.29 0.01 0.63
1rip 81 8.6�15.6 433 1 �3.00 �0.36 0.02 �0.07 1 �4.38 �1.93 0.16 0.07
1rpo 61 7.3�24.4 105 1 �7.13 �4.84 0.32 �0.02 1 �7.06 �5.41 0.25 �0.03
1shaA 103 2.2�5.4 161 1 �8.36 �6.63 0.50 0.19 1 �7.78 �6.14 0.46 0.19
1shg 57 3.6�9.5 86 1 �6.59 �4.62 0.31 0.00 1 �6.61 �5.13 0.30 �0.01
1sro 66 5.2�12.4 98 1 �6.08 �4.09 0.36 0.01 1 �5.62 �4.00 0.32 �0.05
1stfI 98 5.3�21.0 190 1 �1.59 �0.76 �0.01 0.08 1 �1.24 �0.46 �0.02 0.04
1thx 108 2.2�3.7 88 1 �8.41 �7.22 0.53 �0.12 1 �7.68 �6.48 0.45 �0.16
1tit 89 2.0�10.2 73 1 �5.66 �4.30 0.27 0.23 1 �4.97 �3.53 0.26 0.21
1tlk 103 3.4�17.2 136 1 �5.14 �3.18 0.19 0.14 1 �6.36 �4.74 0.18 0.13
1ubi 76 1.9�4.9 122 1 �9.03 �7.61 0.45 0.02 1 �7.72 �5.85 0.35 �0.01
1vif 60 2.6�11.5 111 1 �8.36 �6.68 0.31 0.28 1 �7.08 �5.36 0.24 0.21
1wiu 93 2.3�12.5 103 1 �5.49 �3.63 0.36 0.37 1 �4.17 �2.16 0.29 0.31
2af8 86 3.5�12.6 144 1 �4.28 �1.81 0.28 0.04 1 �5.69 �3.30 0.25 �0.01
2azaA 129 4.2�13.0 121 1 �8.86 �7.52 0.08 �0.13 1 �7.71 �6.19 0.07 �0.03
2bby 69 2.9�12.8 92 1 �6.16 �4.43 0.20 0.08 1 �6.19 �4.46 0.22 0.06
2ezh 65 3.5�13.0 110 1 �7.02 �5.34 0.18 �0.01 1 �6.54 �4.71 0.19 �0.05
2ezk 93 4.0�15.4 82 1 �7.00 �5.58 0.56 0.28 1 �6.83 �5.62 0.52 0.25
2fmr 65 3.3�11.1 128 1 �6.59 �4.75 0.19 0.09 1 �5.91 �4.13 0.17 0.12
2lfb 100 11.1�16.5 228 1 �6.87 �4.23 0.24 0.07 1 �7.01 �4.58 0.27 0.10
2pcy 99 1.7�12.0 71 1 �6.71 �5.39 0.32 0.17 1 �6.48 �5.38 0.27 0.09
2ptl 60 2.4�12.9 122 1 �5.42 �2.55 0.26 0.17 1 �5.18 �3.19 0.21 0.14
2sarA 96 4.8�13.5 125 1 �5.50 �3.32 0.26 0.26 1 �6.66 �4.64 0.29 0.28
5fd1 106 9.3�15.2 143 1 �4.47 �2.64 0.21 0.03 1 �7.52 �5.89 0.32 �0.05
6pti 57 3.2�11.3 156 1 �7.56 �5.57 0.25 �0.06 1 �6.82 �5.24 0.28 0.02
Average 82 4.1�12.3 133 �6.45 �4.57 0.29 0.12 �5.94 �4.22 0.26 0.11
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amplified) certain common distinguishing properties of
the native state, and in this respect, the use of PBSA in
the scoring function has improved upon the GB scores.

In another related comparison, which we call z¢, we
examined the separation between the native state and
the best-ranking decoy in standard-deviation units. z¢ is
defined as:

z0 ¼ x� x0

r
ð5Þ

where x is the score of the native state, x is the score of
the best-ranking decoy, and r is the standard deviation
of the decoy scores. This measure defines the lower
bound of the decoy distribution in terms of the distance

between the lowest-energy decoy and the average energy
of the ensemble in standard-deviation units. In the
z-score comparison, we asked how far the native state is
from the center of the decoy distribution. An interesting
question to ask here is how well separated the native
state is from the edge of the distribution. Because the
main difference in the two scoring functions is in the
treatment of solvation energy, our interpretation here is
that the greater value of z signifies the greater sensitivity
of the native state to solvation effect. Here, we see in
Table 9 that the differences between the PBSA and GB
are small in general. In the case of the local-minima
decoy set, the native structures are sensitive to these two
different methods of solvation-energy treatment and the
two different solvation schemes resulted in about 1.0
standard deviation difference in the native structure
scores in favor of GB. This is also true for ‘‘lattice ssfit’’
set, albeit in the opposite direction. Thus, while a more
sophisticated treatment of solvation effect is expected to
improve the scoring result, this is not universally true
and in most cases, the performance of GB and PBSA
were comparable.

Correlations to Ca-RMSD

For the purpose of structure prediction, a good corre-
lation between the energetic scores and a similarity-dis-
tance measure is a desirable characteristic. In Table 1, 2,
3, 4, 5, 6, and 7, we listed the Pearson correlation (R)
and Spearman’s rank-order correlation (Rs) between the
Ca-RMSD of decoys from the native structure to their
respective energy scores. The average values ranged
from �0.01 to 0.63. In general, the RMSD-energy cor-
relation of the PBSA scoring function was comparable
to that of the GB scoring function (0.19 for PBSA and
0.16 for GB) and neither appeared to be significant.

Looking closer at the issue of correlation, it is gen-
erally recognized that as a consequence of the rugged

Table 8 List of incorrectly identified structures

PBSA GB

4 state reduced 3icb * *
4rxn *

Fisa 1ctf * *
1hdd-C * *
4icb *

Baker CASP3 1bg8-A *
1bl0 *
1eh2 * *

Hg_structal 1hlb * *
1hlm * *
1hsy * *
1mbs * *
1myg-A * *
1myj-A * *
2dhb-A * *
2pgh-A * *
2pgh-B * *

Lattice ssfit 1nkl *
LMDS 1bo0n-B * *

1bba * *
1dtk *
1fc2 *

The ‘‘*’’ indicates that the method failed to identify the native
structure from decoys

Fig. 1 Experimental structures
of incorrectly predicted
structures
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energy landscape, small deviations in Ca-RMSD may
result in large differences in energy and vice versa.
Furthermore, in a recent work, Kihara et al. [24] con-
ducted an extensive comparison of all representative
structures in the PDB and found that a large number of
proteins can be aligned to unrelated folds with RMSD as
small as 3.5 Å. Thus, using Ca-RMSD as a measure for
similarity beyond a small range does not appear to be a
meaningful practice. One interesting observation from
our results is that in the globin-homology set
(hg_structal), the correlation coefficients stand out as the
most highly correlated data set. In Fig. 2, we plotted the
distribution of decoys in each set with respect to their
Ca-RMSD from the native state. Most of the decoys are
distributed beyond 5 Å Ca-RMSD. The only exception
is the hg_structal set, which has most decoys below 5 Å
Ca-RMSD. This observation reflects the fact that
hg_structal decoys were generated by comparative
homology-modeling methods, whereas decoys in other
data sets were produced using ab initio methods that

samples the conformational space in an energy-guided
rather than structure-guided fashion.

Comparison to Hsieh and Luo scoring function

In our final comparison, we look at the recent results
obtained by Hsieh and Luo [10] in which they also
scored similar sets of decoys with a similarly designed
scoring function. In their study, the AMBER molecular-
mechanics force field and molecular-dynamics simula-
tions were also used to obtain the energetic scores. The
main differences between these two approaches are the
force-field parameter set used and the treatment of sol-
vent effect. In their approach, they incorporated the PB
solvent model directly into the molecular-dynamics
simulation and simulated the protein dynamics in PB
solvent, whereas in our approach, the molecular-
dynamics simulations were carried out in GB solvent
and the PBSA energetic contributions were estimated by

Table 9 Comparison of
z-scores PBSA GB Difference

z z¢ z z¢ zPB–zGB z¢PB–z¢GB

4 state reduced �2.41 �0.55 �2.22 �0.88 �0.19 0.33
Fisa �0.53 0.42 �0.29 0.09 �0.24 0.33
Baker CASP3 �1.01 �0.18 �0.65 �0.15 �0.36 �0.03
hg_structal �1.6 �0.37 �1.53 �0.45 �0.07 0.08
lattice ssfit �2.62 �1.22 �1.46 �0.57 �1.16 �0.65
Lmds �2.12 �0.04 �3.64 �0.94 1.52 0.90
Lu and Skolnick �6.45 �4.57 �5.94 �4.22 �0.51 �0.35
Average �3.9 �2.29 �3.67 �2.21 �0.14 0.09
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post-processing the resulting molecular-dynamics tra-
jectories. The advantage of our approach is that, once
the improved accuracy of PBSA scoring over GB is
established, one can selectively perform the time-con-
suming PBSA calculations only on the top-ranking de-
coys identified from the GB simulations, as opposed to
having to perform PBSA calculations on all decoys.

Tables 10 and 11 list the side-by-side comparison of
native rankings in the two decoy sets used in both of the
two studies. In Table 10, the 4-state reduced decoy set,
our post-processing PBSA approach clearly performed
worse than the direct PB approach of Hsieh and Luo,
and in Table 11, the globin-homology decoy set, our
approach performed comparably to the direct PB ap-
proach. Overall, it appears that in terms of the ability to
identify the correct native structure from among the

decoy ensemble, the two approaches performed at
comparable levels, although the direct PB approach
improved the average z-scores over the post-processing
approach.

A potential bias can arise in earlier comparisons in
which trajectories were generated from GB simulations.
Indeed, comparisons based on explicit-solvent simula-
tions could eliminate this potential bias. Alternatively,
replacing GB solvent with PB solvent directly in the MD
simulations might also overcome the problem. To this
end, it is interesting to note that neither the post-pro-
cessing nor the direct PB approaches outperformed the
GB-based scoring approach significantly.

It is rather encouraging to note that physics-based
scoring approach has come a long way. Although the
earlier studies based on gas-phase energies laid the

Table 10 Comparison with
Hsieh and Luo scoring function
(4 state reduced)

The incorrectly identified
entries are highlighted

PDB Ndecoy Post-processing PB Direct PB GB

Rank z Rank z Rank z

1ctf 631 1 �3.00 1 �2.76 1 �1.70
1r69 676 1 �2.89 1 �3.01 1 �1.89
1sn3 661 1 �1.84 1 �4.88 1 �1.14
2cro 675 1 �1.99 1 �2.58 1 �1.54
3icb 654 7 �1.34 2 �2.06 2 �0.80
4pti 688 1 �3.63 1 �4.77 1 �3.46
4rxn 678 6 �2.20 1 �3.95 1 �5.00
Average �2.41 �3.43 �2.22

Table 11 Comparison with
Hsieh and Luo scoring function
(hg_structal)

Incorrectly identified entries are
marked in italics

PDB Nres Post-process PB Direct PB GB

Rank z Rank z Rank z

1ash 147 1 �2.34 1 �4.32 1 �2.85
1bab-B 146 1 �2.76 1 �2.5 1 �2.48
1col-a 197 1 �3.20 1 �2.73 1 �1.53
1cpc-A 162 1 �4.41 1 �4.42 1 �4.42
1ecd 136 1 �0.97 1 �1.29 1 �0.71
1emy 153 1 �1.29 1 �1.43 1 �0.89
1flp 142 1 �2.88 1 �3.47 1 �3.29
1gdm 153 1 �1.17 1 �1.63 1 �0.81
1hbg 147 1 �2.76 1 �3.57 1 �3.23
1hbh-A 142 1 �1.93 2 �2.4 1 �3.23
1hbh-B 146 1 �1.90 1 �2.75 1 �2.01
1hda-A 141 1 �1.63 1 �2.3 1 �1.85
1hda-B 145 1 �2.33 2 �2.7 1 �2.11
1hlb 157 6 �0.85 4 �4.19 5 �0.79
1hlm 158 28 0.29 28 �1.23 29 0.15
1hsy 153 5 �0.87 2 �0.95 2 �0.60
1ith-A 146 1 �0.92 1 �1.56 1 �0.55
1lht 153 1 �1.03 1 �1.58 1 �0.69
1mba 13 1 �2.44 1 �3.01 1 �2.61
1mbs 153 29 1.52 25 �1.44 29 0.73
1myg-A 153 4 �0.95 3 �1.65 4 �0.68
1myj-A 153 4 �1.76 2 �2.14 5 �1.57
1myt 146 1 �0.97 1 �1.41 1 �0.72
2dhb-A 141 8 �0.67 4 �2.27 13 �0.41
2dhb-B 146 1 �2.05 1 �2.18 18 0.09
2lhb 149 1 �2.86 1 �3.02 1 �3.06
2pgh-A 141 16 �0.13 5 �2.28 14 �0.40
2pgh-B 146 8 �0.35 4 �1.31 8 �0.34
4sdh-A 145 1 �2.83 1 �4.04 1 �3.47
Average �1.60 �2.41 �1.53
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groundwork for much of the work cited herein, inclusion
of solvation effects has been a crucial step in the devel-
opment of physics-based scoring methods. Some of the
clear advantages of the physics-based scoring functions
are consistency, repeatability, and transferability. Al-
though performance differences do exist, most of the
physics-based scoring functions have been shown to do a
reasonable job, despite the considerable differences in the
details. This is a rather encouraging feature and is ex-
pected to facilitate wide applications in the community.

One the other hand, this study also points to the
weaknesses in this type of method, one of which is the
poor scoring performance in the ion-bound proteins.
Admittedly, this is a rather difficult issue because atomic-
level information is needed to model the ions accurately.
However, the present scoring methods are rather generic.
Another area that may need improvement is the confor-
mational-sampling ability. This was clearly the case for
1hdd, in which the native experimental structure is a
DNA-protein complex and in the ‘‘hg’’ decoy set, inwhich
most native experimental structures were holo-complexes
with rather large ligands. However, the decoys were in the
apo forms. Evidently, considerable conformational
changes are expected between the apo- and the holo-
forms and energetic comparison between these two forms
has to be made within this context. In these cases, inter-
actions with ligands and substrates play important roles
and correct scoring functions must take these interactions
into account. Conversely, it is most likely unfruitful
without considering the ligands. To some extent, scoring
against these apo-decoys is a bit misleading. As a conse-
quence, the inability of scoring these proteins is not nec-
essarily a disapproval of the scoring methods or
functions.

Conclusions

In this study, we have attempted to examine the MM-
PBSA method of free-energy estimation by comparing
the results against a GB-based approach using large
protein-decoy datasets. The PB-based approach offers a
clear conceptual advantage. However, the overall per-
formance of the MM-PBSA approach is comparable to
the computationally less expensive GB approach. This is
further corroborated by the direct comparison of our
results to those obtained by Hsieh and Luo using a di-
rect PB solvent simulation, which also showed marginal
improvement over the GB method.

This result led us to conclude that PB-based ap-
proaches provide a slight improvement upon GB-based
scoring functions. Obviously, the disadvantage of the
PB-based approach is the increased computational cost.
To this end, methods such as those used by Hsieh and
Luo are important for the application of the PB-based
approach. On the other hand, the constant improvement
in the GB method will also bring about the changes

needed for a higher level performance without incurring
the computational cost associated with the PB method.

A second conclusion of this study is that, in order to
characterize scoring functions better, a better similarity
measure than Ca-RMSD is required. Recently, Zhu et al.
[25] have demonstrated that using the content of native
inter-residue contacts as the similarity measure can
substantially increase the correlation between similarity
distance and the energy scores. Several new similarity
measures such as the graph-theory based method of
Weskamp et al. [26] or the topological representation of
Bostick et al. [27] have been developed to facilitate
comparison of protein structures at the genomic scale.
We believe that co-development of future scoring func-
tions and similarity-measurement methods might be a
fruitful synergistic combination.
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